Comparing and Combining Generative and Posterior Probability Models: Some Advances in Sentence Boundary Detection in Speech

نویسندگان

  • Yang Liu
  • Andreas Stolcke
  • Elizabeth Shriberg
  • Mary P. Harper
چکیده

We compare and contrast two different models for detecting sentence-like units in continuous speech, using both acoustic and lexical information. The first approach is based on hidden Markov sequence models based on N-grams, uses maximum likelihood estimation, and model interpolation to combine different representations of the data. The second approach models the posterior probabilities of the target classes, is therefore discriminative, and integrates multiple knowledge sources in the maximum entropy (maxent) framework. Both models combine lexical, syntactic, and prosodic information. We develop a technique for integrating pretrained probability models into the maxent framework, and show that this approach can improve, if only slightly, on an HMM-based state-of-the-art system for the sentence-boundary detection task. A much more substantial improvement is obtained by combining the posterior probabilities of the two systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing and Combining Modeling Techniques for Sentence Segmentation of Spoken Czech Using Textual and Prosodic Information

This paper deals with automatic sentence boundary detection in spoken Czech using both textual and prosodic information. This task is important to make automatic speech recognition (ASR) output more readable and easier for downstream language processing modules. We compare and combine three statistical models – hidden Markov model, maximum entropy, and adaptive boosting. We evaluate these metho...

متن کامل

Improving Automatic Sentence Boundary Detection with Confusion Networks

We extend existing methods for automatic sentence boundary detection by leveraging multiple recognizer hypotheses in order to provide robustness to speech recognition errors. For each hypothesized word sequence, an HMM is used to estimate the posterior probability of a sentence boundary at each word boundary. The hypotheses are combined using confusion networks to determine the overall most lik...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

A deep neural network approach for sentence boundary detection in broadcast news

This paper presents a deep neural network (DNN) approach to sentence boundary detection in broadcast news. We extract prosodic and lexical features at each inter-word position in the transcripts and learn a sequential classifier to label these positions as either boundary or non-boundary. This work is realized by a hybrid DNN-CRF (conditional random field) architecture. The DNN accepts prosodic...

متن کامل

Sentence Boundary Detection in Broadcast Speech Transcripts

This paper presents an approach to identifying sentence boundaries in broadcast speech transcripts. We describe finite state models that extract sentence boundary information statistically from text and audio sources. An n-gram language model is constructed from a collection of British English news broadcasts and scripts. An alternative model is estimated from pause duration information in spee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004